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F-54506 Vandœuvre lès Nancy Cedex, France
2 Institut für Theoretische Physik I, Universität Erlangen-Nürnberg, Staudtstraße 7B3,
D-91058 Erlangen, Germany
3 School of Physics, Korea Institute for Advanced Study, Cheongnyangni 2-dong,
Dongdaemun-gu, Seoul 130-722, Korea

Received 16 March 2007, in final form 10 May 2007
Published 20 June 2007
Online at stacks.iop.org/JPhysA/40/7389

Abstract
The kinetic spherical model with long-range interactions is studied after a
quench to T < Tc or to T = Tc. For the two-time response and correlation
functions of the order parameter as well as for composite fields such as the
energy density, the ageing exponents and the corresponding scaling functions
are derived. The results are compared to the predictions which follow from
local scale invariance.

PACS numbers: 05.40.−a, 05.10.Gg, 05.70.Ln, 64.60.Ht, 81.15.Aa, 05.70.Np

1. Introduction

A many-body system rapidly brought out of some initial state by quenching it to either a critical
point or into a coexistence region of the phase diagram where there are at least two equivalent
equilibrium states undergoes ageing [1]. For ageing systems, the physical state evolves slowly,
non-exponentially and depends on the time since the quench was performed and hence time-
translation invariance is broken. In addition, there holds some kind of dynamical scaling,
whether or not the stationary states are critical. These aspects of ageing can be conveniently
studied through the two-time response and correlation functions defined as

R(t, s) = δ〈O(t, r)〉
δh(s, r)

∣∣∣∣
h=0

= s−a−1fR

(
t

s

)
, fR(y)

y→∞∼ y−λR/z, (1.1)

C(t, s) = 〈O(t, r)O(s, r)〉 = s−bfC

(
t

s

)
, fC(y)

y→∞∼ y−λC/z, (1.2)

where the observable O(t, r) (at time t and location r) is typically taken to be the order-
parameter φ(t, r). In this work, we shall also study composite fields such as the energy
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density. We denote by h the field conjugate to O (and when O is the order parameter the
conjugate field h is the associated magnetic field). The dynamical scaling forms (1.1), (1.2) are
expected to hold in the scaling limit where both t, s � tmicro and also t−s � tmicro, where tmicro

is some microscopic time scale. In writing equations (1.1), (1.2), it is implicitly assumed that
the underlying dynamics is such that there is a single relevant length-scale L = L(t) ∼ t1/z,
where z is the dynamical exponent (the presence of another relevant large length scale would
break dynamical scaling). Non-equilibrium universality classes are distinguished by different
values of exponents such as a, b, λC, λR (which will depend on the observable O and the field
h used and also on whether T < Tc or T = Tc). For reviews, see [1–5].

In trying to find a systematic approach to determine the scaling functions fR,C it has been
proposed to generalize the dynamical scaling to a local scale invariance [6, 7] which include the
transformation t �→ (αt + β)/(γ t + δ) in time with αδ − βγ = 1. In a field-theoretical setting
[8, 9], the autoresponse function can be formally rewritten as a correlator R(t, s) = 〈φ(t )̃φ(s)〉
where φ̃ is the response field associated with φ. From the assumption that both φ and φ̃ are
so-called quasi-primary scaling operators [7, 10] (see section 3), it follows that

fR(y) = f0y
1+a′−λR/z(y − 1)−1−a′

�(y − 1), (1.3)

where �(y) is the Heaviside function which expresses causality, a′ is an exponent and f0

a normalization constant. A similar explicit, if lengthy, expression can be given for the
autocorrelation. We refer to [11–13] for recent reviews on the derivation of these results and
on the numerous examples where these predictions have been tested. For our purposes, it is
enough to note that most of these tests are done in situations where the dynamical exponent
z = 2. In particular, almost all existing tests for z 	= 2 merely tested the prediction (1.3), and
this for the order parameter only, see [11, 12] for a detailed discussion. The only exception
are a few simple models where z = 4 [14, 15].

A fuller picture on the validity of the several technical assumptions which are needed for
the precise formulation of the theory of local scale invariance (LSI) can only come from more
systematic tests of its predictions. To this end, we shall study in this paper the ageing behaviour
of the spherical model with long-range interactions. It was shown by Cannas, Stariolo and
Tamarit [16] that for quenches to T < Tc if the exchange couplings decay sufficiently slowly
with the distance then the dynamical exponent z becomes a continuous function of the control
parameters of the model and that the scaling forms (1.1), (1.2) hold for the order parameter.
Here, we shall extend these considerations to the critical case T = Tc and shall further look
at the scaling behaviour of composite operators (i.e. energy density). Specifically, we shall
enquire

(i) whether dynamical scaling holds, and if so, what are the values of the corresponding
non-equilibrium exponents?

(ii) what is the form of the scaling functions of responses and correlators?
(iii) which of the composite operators, if any, transform as quasi-primary fields under local

scale invariance?

In section 2, we review the exact solution of the kinetic long-range spherical model and list
our results for the non-equilibrium exponents and the scaling functions for the order parameter
and for composite fields. Some of the details are treated in the appendix. In section 3, we first
show that the presently available formulation [7] of local scale invariance cannot explain our
results on the spacetime form of the response functions when z 	= 2. We then announce some
results of a forthcoming paper [17] on a general reformulation of local scale invariance for
z 	= 2 before comparing our explicit results with the corresponding predictions of that general
theory. In section 4 we conclude.
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2. Exact solution of the long-range spherical model

The two-time correlation and response functions of the order parameter in the spherical
model when quenched either to T = Tc or else to T < Tc are well-known in the case of
nearest-neighbour interactions [18–22]. These are also known for the long-range model when
quenched to T < Tc [16]. Here, we shall derive the response and correlation functions of the
order parameter and of certain composite operators in the long-range mean spherical model
quenched to T � Tc.

2.1. Long-range spherical model

The long-range spherical model is defined in terms of a real spin variable S(t,x) at time t and
on the sites x of a d-dimensional hypercubic lattice � ⊂ Z

d , subject to the (mean) spherical
constraint 〈∑

x∈�

S(t,x)2

〉
= N , (2.1)

where N is the number of sites of the lattice5. The Hamiltonian is given by [24]

H = −1

2

∑
x,y

J (x − y)Sx(Sy − Sx), (2.2)

where the sum extends over all pairs (x,y) such that x − y 	= 0. The coupling constant J (x)

of the model is defined by

J (x) =
∑

y∈�

′|y|−(d+σ)

−1

|x|−(d+σ), (2.3)

when x 	= 0 and vanishes when x = 0; the summation is over all lattice sites except y = 0.
The last term in (2.2),

∑
x,y J (x − y)S2

x, can also be absorbed into the Lagrange multiplier
that imposes the spherical constraint, see below.

The ‘usual’ spherical model with short-range interactions is given by Jsr (x − y) =
J

∑
µ(x) δy,x+µ(x), where x+µ(x) runs over all the neighbouring sites of x. When σ � 2, the

relevant large-scale behaviour of the above model, (2.2) and (2.3), is governed by this short-
range model. Here, we shall focus on truly long-range interactions such that 0 < σ < 2. In
this case, the dynamical exponent z = σ can be continuously varied by tuning this parameter,
see [16, 24] and below. For the equilibrium behaviour of the model, consult the classic review
by Joyce [24].

The dynamics is governed by the Langevin equation6

∂tS(t,x) = − δH
δSx

∣∣∣∣
Sx→S(t,x)

− z(t)S(t,x) + η(t,x), (2.4)

where the coupling to the heat bath at temperature T is described by a Gaussian noise η of
vanishing average and a variance

〈η(t,x)η(t ′,x′)〉 = 2T δ(t − t ′)δ(x − x′). (2.5)

The Lagrange multiplier z(t) is fixed by the mean spherical constraint.

5 For short-ranged interactions, a careful analysis [23] has shown that the long-time behaviour is not affected whether
(2.1) is assumed exactly or on average.
6 In equation (2.4), fluctuations in the Lagrange multiplier z(t) are neglected. As pointed out in [22], these must
be taken into account when treating non-local observables involving spins from the entire lattice or if the initial
magnetization is nonzero. Here, we are only interested in local quantities and use a vanishing initial magnetization.
See [25] for a careful discussion on the applicability of Langevin equations in long-ranged systems.
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The Langevin equation and the variance of the noise in the Fourier space read

∂t Ŝ(t,k) = −(ω(k) + z(t))̂S(t,k) + η̂(t,k), (2.6)

〈̂η(t,k)̂η(t ′,k′)〉 = 2T (2π)dδ(t − t ′)δ(k + k′), (2.7)

where ω(k) = Ĵ (0) − Ĵ (k). The hatted functions denote the Fourier transform of the
corresponding functions. In the long-wavelength limit |k| → 0, the function ω(k) → B|k|σ ,
where the constant B is given by [16] B = lim|k|→0(Ĵ (0) − Ĵ (k))|k|−σ .

The solution of the above equation is

Ŝ(t,k) = e−ω(k)t

√
g(t; T )

[
Ŝ(0,k) +

∫ t

0
dτ eω(k)τ

√
g(τ ; T )̂η(τ,k)

]
, (2.8)

with the constraint function g(t; T ) = exp
(
2
∫ t

0 dτ z(τ )
)
. The system is assumed to be

quenched from far above the critical temperature, hence 〈̂S(0,k)〉 = 0; and the spins are
assumed to be uncorrelated initially, hence the spherical constraint implies 〈̂S(0,k)̂S(0,k′)〉 =
(2π)dδ(k + k′). Therefore, the spin–spin correlation function when t > s is

〈̂S(t,k)̂S(s,k′)〉 = (2π)dδ(k + k′)Ĉ(t, s;k), (2.9)

where

Ĉ(t, s;k) = e−ω(k)(t+s)

√
g(t; T )g(s; T )

[
1 + 2T

∫ s

0
dτ e2ω(k)τ g(τ ; T )

]
. (2.10)

The spherical constraint implies 1 = ∫
�k

Ĉ(t, t;k) and gives g(t; T ) as the solution to the
Volterra integral equation [16, 20]

g(t; T ) = f (t) + 2T

∫ t

0
dτf (t − τ)g(τ ; T ), (2.11)

with g(0; T ) = 1, and f (t) = f (t, 0) is obtained from the function

f (t; r) :=
∫

�k

dk exp(ik · r − 2ω(k)t), (2.12)

where �k denotes the first Brillouin zone of the lattice �.

2.2. Composite operators: correlations and responses

We shall now consider not only the spin operator S(t, r) but also some composite fields,
specifically the spin-squared (spin2) operator and the energy-density operator. We denote the
spin and spin2 operators by

O1(t,x) := S(t,x), (2.13)

O2(t,x) := S2(t,x) − 〈S2(t,x)〉, (2.14)

respectively. The energy-density operator is defined as

Oε(t,x) := E(t,x) − 〈E(t,x)〉,
E(t,x) :=

∑
x′

J (x − x′)S(t,x)(S(t,x′) − S(t,x)). (2.15)

These composite operators are defined in such a way that their average value is zero, and
hence their correlation functions are essentially the connected correlation functions. Also
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note that since the energy is defined only up to a constant there is no unique definition of the
energy-density operator.

The distinction between O2 and Oε might be better understood as follows. We look into
the continuum limit of the energy-density operator, at least for short-range model, for we
shall later discuss that this operator is not quasi-primary under local scale-invariance. In the
short-range model, the expression for energy in lattice models is usually taken as

H = −J
∑

x,µ(x)

SxSx+µ(x), (2.16)

where x + µ(x) runs over the neighbouring sites of x. In such a case, the energy density
could be defined as ε̃(x) = −J

∑
µ SxSx+µ, which in the continuum limit would reduce to

ε̃(x) = −J
(
2S2

x +µ2Sx∇2Sx

)
, where µ is the lattice constant. But if we had added an overall

constant E0 = N = ∑
x S2

x then the energy density could be defined as

ε(x) = −J
∑
µ

Sx(Sx+µ − Sx) → −Jµ2Sx∇2Sx(1 + O(µ)). (2.17)

Hence Hsr = ∑
x ε(x) = Jµ2 ∑

x(∇Sx)2, up to boundary terms. Therefore, for our model
(2.2) the two operators O2(t,x) and Oε(t,x) must be distinguished.

The connected two-point correlation functions of the composite operators

Cab(t, s;x − x′) := 〈Oa(t;x)Ob(s;x′)〉 (2.18)

are obtained by making use of Wick’s contraction as detailed in the appendix. Throughout
it is implicitly assumed that t > s unless stated otherwise. As we have spatial-translation
invariance in our system, we shall find that all two-point quantities depend merely on the
difference r := x − x′ of the spatial coordinates.

The response functions of the fields {Oa(t,x)} to the conjugate fields {ha(t,x)},

Rab(t, s,x − x′) := δ〈Oa(t,x)〉{h}
δhb(s,x′)

∣∣∣∣
{h}={0}

, (2.19)

are obtained by linearly perturbing the Hamiltonion, H → H − ∑
a,t,x ha(t,x)Oa(t,x),

as detailed in the appendix. The above-defined response function can be interpreted as the
susceptibility of the expectation value of a field to near-equilibrium fluctuations.

Finally, we also obtain out-of-equilibrium responses of the fields {Oa(t,x)} to local
temperature fluctuations. This we do by perturbing the noise strength T → T + δT (t,x) and
then evaluating the response functions

R(T )
a (t, s, ;x − x′) := δ〈Oa(t,x)〉δT

δT (s,x′)

∣∣∣∣
δT =0

. (2.20)

Let us specify at this point the asymptotic scaling forms that we expect for the autocorrelation
function Cab(t, s) := Cab(t, s; 0) and the autoresponse functions Rab(t, s) := Rab(t, s; 0) and
R(T )

a (t, s) := R(T )
a (t, s; 0). They are expected to behave as

Cij (t, s) = s−bij f
ij

C (t/s), f
ij

C (y)
y→∞∼ y−λ

ij

C /z, (2.21)

Rij (t, s) = s−aij −1f
ij

R (t/s), f
ij

R (y)
y→∞∼ y−λ

ij

R /z, (2.22)

R(T )
i (t, s) = s−a

(T )
i −1f

(T )i
R (t/s), f

(T )i
R (y)

y→∞∼ y−λ
(T )i
R /z, (2.23)

in the scaling regime where t, s and t − s are simultaneously large. This also defines the
non-equilibrium critical exponents aij , bij , a

T
i , λ

ij

R , λ
ij

C , λ
(T )i
R .
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We now write the correlation and response functions of some of the fields {Oa(t,x)}
in terms of the spin–spin correlator C(t, s; r), the constraint function g(t; T ) and f (t; r).
The details of these computations are given in the appendix, while the explicit forms of these
functions and their asymptotics are spelt out in the next subsection.

2.2.1. The correlation functions.

We obtain the following expressions for the non-vanishing correlation functions of the
composite fields.

• The spin2–spin2 correlation function is found to be

C22(t, s; r) = 〈O2(t, r)O2(s, 0)〉 = 2[C(t, s; r)]2. (2.24)

For the short-range case, this formula has already been found in [28].
• The spin2–energy-density correlation functions are

C2ε(t, s; r) = 〈O2(t, r)Oε(s, 0)〉 = −1

2g(t; T )
∂t (g(t; T )C22(t, s; r)), (2.25)

and

Cε2(t, s; r) = C2ε(t, s; r). (2.26)

This is a stronger result than the obvious relation Cε2(t, s; r) = C2ε(s, t;−r) and follows
from ω(k) = ω(−k).

• The energy-density–energy-density correlation function is given by

Cεε(t, s; r) = −1

2g(t; T )
∂t (g(t; T )C2ε(t, s; r)). (2.27)

2.2.2. The response functions.

For the response functions, we obtain the following expressions. Because of causality, in all
expressions given below the factor �(t − s) is implied, where the step function �(t − s) = 1
for t > s and zero otherwise.

• Responses to the magnetic field h1(t,x), which are obtained when H → H −∑
t,x h1(t,x)S(t,x), are given by

R11(t, s; r) =
√

g(s; T )

g(t; T )
f

(
t − s

2
, r

)
, (2.28)

R21(t, s; r) = Rε1(t, s; r) = 0. (2.29)

• Responses to the conjugate field h2(t,x) of spin2 operator are obtained when H →
H − ∑

t,x h2(t,x)O2(t,x) and are given by

R12(t, s; r) = 0, (2.30)

R22(t, s; r) = 4R11(t, s; r)C(t, s; r), (2.31)

Rε2(t, s; r) = −R22(t, s; r)∂t ln f

(
t − s

2
, r

)
, (2.32)

The expression for R22(t, s; r) has already been given in [28] for the short-range model.
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• Responses to the conjugate field hε(t,x) of energy-density operator are obtained when
H → H − ∑

t,x hε(t,x)Oε(t,x) and are given by

R1ε(t, s; r) = 0, (2.33)

R2ε(t, s; r) = −1

2g(t; T )
∂t (g(t; T )R22(t, s; r)), (2.34)

Rεε(t, s; r) = −1

2g(t; T )
∂t (g(t; T )R2ε(t, s; r)). (2.35)

• The spin, the spin2 and the energy-density responses to temperature fluctuation are

R(T )
1 (t, s; r) = 0, (2.36)

R(T )
2 (t, s; r) = 2(R11(t, s; r))2, (2.37)

R(T )
ε (t, s; r) = −1

2g(t; T )
∂t (g(t; T )R2(t, s; r)), (2.38)

respectively.

2.3. Late-time behaviour of correlation- and response- functions

In this section, we first explicitly evaluate in the scaling limit the quantities specified in
the previous subsection, and then identify the critical exponents and scaling functions. The
treatment is based on previous results and techniques from [16, 20].

In the late-time limit we can approximate the function ω(k) ≈ B|k|σ , where 0 < σ < 2
[16]. Hence, the dynamical exponent in this range of σ is given by

z = σ. (2.39)

Furthermore, the large-time behaviour of f (t) and g(t; T ) are as follows. The function f (t,x)

in this limit becomes

f (t;x) ≈ B0t
−d/σG(|x|t−1/σ ); B0 :=

∫
k

e−2B|k|σ . (2.40)

Here, the scaling function G(|u|t−1/σ ) for any variable u is defined as

G(|u|t−1/σ ) := B−1
0 td/σ

∫
k

eik·u e−2B|k|σ t , (2.41)

where
∫
k · · · = (2π)−d

∫
ddk · · · denotes an integral over R

d .
The Laplace transform of f (t) is given by the expression

fL(p) = −A0p
−1+d/σ +

∞∑
n=1

An(−p)n−1, (2.42)

where the universal constant A0 = |�(1 − d/σ)|B0 and the nonuniversal constants An =∫
�k

(2ωk)−n − ∫
k(2B|k|σ )−n, for n = 1, 2 . . . . We note that A1 = 1/2Tc.

Now the constraint equation (2.11), upon Laplace transforming, becomes

gL(p; T ) = fL(p)

1 − 2TfL(p)
, (2.43)

and is solved in the small-p region using equation (2.42). Following a similar analysis as
done for σ = 2 case in [20], we find the large-t limit of the function g(t; T ), which is given
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in equations (2.44), (2.60) and (2.76). This asymptotic constraint function has three different
forms depending on the quenched temperature and the lattice dimension, for a given value of
the parameter σ . The known case for the short-range model can be obtained by taking the
limit σ → 2. The three cases are

• T < Tc. This case was treated in [16] for the spin–spin correlator and the spin response.
We recover their results and further add other correlation and response functions of the
composite fields.

• T = Tc, σ < d < 2σ . To the best of our knowledge the quench to criticality has not been
treated before. We must further distinguish two critical cases. In the first case, d can at
most be 4 since σ � 2.

• T = Tc, d > 2σ . In this second case of a critical quench, the space dimension d is not
bounded from above. This case includes the mean-field case.

We now discuss the large-time behaviour of the correlation and response functions in
these three cases.

2.3.1. Case I: T < Tc.

Since the system exhibits space-translation invariance we take x′ = 0. We denote y = t/s > 1.
The constraint function for T < Tc in the large-time limit [16] is

g(t; T ) ≈ B0

(
1 − T

Tc

)−1

t−d/σ , (2.44)

and hence the spin–spin correlation function for T < Tc in the scaling regime reduces to

Ĉ(t, s;k) =
(

1 − T

Tc

)
B−1

0 sd/σ yd/2σ e−B|k|σ (t+s), (2.45)

in the Fourier space or

C(t, s; r) = C0y
d/2σ (y + 1)−d/σ G(u), (2.46)

in the direct space, where C0 = 2d/σ (1 −T/Tc). Here and below, expressions become shorter
with the use of the three related scaling variables u, v and w, where

u = |r|((t + s)/2)−1/σ = w(1 + s/t)−1/σ ,

v = |r|((t − s)/2)−1/σ = w(1 − s/t)−1/σ , (2.47)

w = |r|(t/2)−1/σ .

The autocorrelation function can now be directly deduced since the scaling function G(0) = 1
for r = 0. Hence one reads off, see (2.21) and table 1,

b11 = 0, λ11
C = d

2
, f 11

C (y) = C0y
d/2σ (y + 1)−d/σ . (2.48)

Below we list the remaining expressions in the scaling limit. The autocorrelation
and autoresponse functions are obtained for the composite operators in a similar way as
is demonstrated for C(t, s; r) = C11(t, s; r). The non-equilibrium ageing exponents are listed
in tables 1 and 2, for future reference.

We first list the non-vanishing correlation functions.

• The spin2–spin2 correlator, obtained by substituting equation (2.46) into (2.24), is

C22(t, s; r) = 2C2
0yd/σ (y + 1)−2d/σ G2(u). (2.49)
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Table 1. Non-equilibrium exponents b, λC , as defined in (2.21), for several non-equilibrium
autocorrelation functions in the long-range spherical model. The exponents for the short-range
model can be recovered by taking the limit σ → 2.

b λC

T < Tc T = Tc T < Tc T = Tc

Function σ < d < 2σ d > 2σ

C11 0 d/σ − 1 d/2 3d/2 − σ d
C22 0 2d/σ − 2 d 3d − 2σ 2d

C2ε 1 2d/σ − 1 d + σ 3d − σ 2d + σ

Cεε 2 2d/σ d + 2σ 3d 2d + 2σ

Table 2. Non-equilibrium exponents a = a′ and λR , as defined in (2.22) and (2.23), for several
scaling operators in the long-range spherical model. The exponents for the short-range model can
be obtained by taking the limit σ → 2.

a λR

T < Tc T = Tc T < Tc T = Tc

Function σ < d < 2σ d > 2σ

R11 d/σ − 1 d/σ − 1 d/2 3d/2 − σ d
R22 d/σ − 1 2d/σ − 2 d 3d − 2σ 2d

Rε2 d/σ 2d/σ − 1 d + σ 3d − σ 2d + σ

R2ε d/σ 2d/σ − 1 d + σ 3d − σ 2d + σ

Rεε d/σ + 1 2d/σ d + 2σ 3d 2d + 2σ

RT
2 2d/σ − 1 2d/σ − 1 d 3d − 2σ 2d

RT
ε 2d/σ 2d/σ d + σ 3d − σ 2d + σ

• The spin2–energy-density correlator, obtained by using equations (2.44), (2.49) in (2.25),
is

C2ε(t, s; r) = 2C2
0

σ
s−1yd/σ (y + 1)−1−2d/σ G(u)DuG(u), (2.50)

where the operator Dz is defined as

Dz := z∂z + d. (2.51)

• The energy-density–energy-density correlator, obtained by inserting equations (2.44),
(2.50) into (2.27), is given by

Cεε(t, s; r) = C2
0

σ 2
s−2yd/σ (y + 1)−2−2d/σ (Du + d + σ)[G(u)DuG(u)]. (2.52)

Next we write the non-vanishing response functions.

• The spin-response function, obtained using equations (2.40), (2.44) in (2.28), is given by

R11(t, s; r) = C1s
−d/σ yd/2σ (y − 1)−d/σ G(v), (2.53)

where C1 = ∫
k exp(−B|k|σ ), and v was defined in equation (2.47).

• The non-vanishing response functions to spin2 conjugate field, inferred from equations
(2.31), (2.32) using (2.40), (2.46), (2.53), are given by

R22(t, s; r) = 4C0C1s
−d/σ yd/σ (y2 − 1)−d/σ G(u)G(v), (2.54)

Rε2(t, s; r) = 4C0C1

σ
s−1−d/σ yd/σ (y2 − 1)−d/σ Dv

y − 1
G(u)G(v), (2.55)

where Dv is as given in (2.51) and u, v were defined in (2.47).
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• Responses to the energy-density conjugate field, obtained from equations (2.34), (2.35)
using (2.44), (2.54), are given as follows:

R2ε(t, s; r) = 2C0C1

σ
s−1−d/σ yd/σ (y2 − 1)−d/σ

(
Du

y + 1
+

Dv

y − 1

)
G(u)G(v), (2.56)

Rεε(t, s; r) = C0C1

σ 2
s−2−d/σ yd/σ (y2 − 1)−d/σ

×
(

D2
u + σDu

(y + 1)2
+

2DuDv

y2 − 1
+

D2
v + σDv

(y − 1)2

)
G(u)G(v). (2.57)

• The spin2 and energy-density responses to local temperature fluctuations, obtained using
equations (2.44), (2.53) in (2.37), (2.38), are

R(T )
2 (t, s; r) = 2C2

1s−2d/σ yd/σ (y − 1)−2d/σ G2(v), (2.58)

R(T )
ε (t, s; r) = 2C2

1

σ
s−1−2d/σ yd/σ (y − 1)−1−2d/σ G(v)DvG(v), (2.59)

respectively.

2.3.2. Case IIa: T = Tc and σ < d < 2σ .

For T = Tc and σ < d < 2σ , the constraint function has the form

g(t; Tc) ≈ (
4T 2

c A0�(−1 + d/σ)
)−1

t−2+d/σ , (2.60)

and hence the correlation function in the scaling regime reduces to

Ĉ(t, s;k) = 2Tcsy
1−d/2σ

∫ 1

0
dz e−B|k|σ (t+s−2sz)z−2+d/σ , (2.61)

while in direct space it is given by

C(t, s; r) = 2TcC1s
1−d/σ y1−d/2σ (y + 1)−d/σ

∞∑
n=0

(y + 1)−nGn(u)

n!(n − 1 + d/σ)
, (2.62)

where u is given in (2.47) and the function Gn(|v|t−1/σ ) is defined as

Gn(|v|t−1/σ ) := 4ntn+d/σ B−1
0

∫
k

eik·v e−2B|k|σ t (B|k|σ )n, (2.63)

for any variable v. The spin-response function in this case has the form

R11(t, s;x) = C1s
−d/σ y1−d/2σ (y − 1)−d/σ G(v). (2.64)

To avoid presenting lengthy expressions we write only the leading behaviour in y for the
correlators and responses in this case. The spin–spin correlation function in this approximation
becomes

C(t, s; r) ≈ 2T̃cC1s
1−d/σ y1−3d/2σ G(w), (2.65)

where T̃c = Tcσ/(d − σ), and w is as given in (2.47). Setting w and v to zero, we can read
off the ageing exponents, see tables 1 and 2,

a11 = b11 = d

σ
− 1, λ11

R = λ11
C = 3d

2
− σ, z = σ (2.66)

The other non-vanishing correlators and responses are given as follows, wherein we first
list the correlation functions:
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• The spin2–spin2 correlator, obtained from equations (2.65), (2.24), is given by

C22(t, s; r) ≈ 8T̃ 2
c C2

1s
2−2d/σ y2−3d/σ G2(w). (2.67)

• For the spin2–energy correlator, using (2.60), (2.67) in (2.25), we obtain

C2ε(t, s; r) ≈ 8T̃ 2
c C2

1

σ
s1−2d/σ y1−3d/σ G(w)DwG(w). (2.68)

• Finally the energy–energy correlator, using (2.60), (2.68) in (2.27), reads

Cεε(t, s; r) ≈ 4T̃ 2
c C2

1

σ 2
s−2d/σ y−3d/σ (Dw + d + σ)[G(w)DwG(w)]. (2.69)

The non-vanishing response functions are listed below.

• The responses to the spin2 conjugate field, obtained using (2.40), (2.64), (2.65) in (2.31),
(2.32), are given by

R22(t, s; r) ≈ 8T̃cC
2
1s

1−2d/σ y2−3d/σ G2(w), (2.70)

Rε2(t, s; r) ≈ 8T̃cC
2
1

σ
s−2d/σ y1−3d/σ G(w)DwG(w). (2.71)

• The responses to energy-density conjugate field, obtained from (2.60), (2.70) and (2.34),
(2.35), are

R2ε(t, s; r) ≈ Rε2(t, s; r), (2.72)

Rεε(t, s; r) ≈ 4T̃cC
2
1

σ 2
s−1−2d/σ y−3d/σ (Dw + d + σ)[G(w)DwG(w)]. (2.73)

• Lastly, the responses to temperature fluctuations, obtained from (2.60), (2.64) and (2.37),
(2.38), are

R(T )
2 (t, s; r) ≈ 2C2

1s−2d/σ y2−3d/σ G2(w), (2.74)

R(T )
ε (t, s; r) ≈ 2C2

1

σ
s−1−2d/σ y1−3d/σ G(w)DwG(w). (2.75)

2.3.3. Case IIb: T = Tc and d > 2σ .

For T = Tc and d > 2σ , the constraint function at large times is

g(t; Tc) ≈ (
4T 2

c A2
)−1

. (2.76)

This is just a constant and does not appear in the correlation and response functions to leading
order in this large-time limit. In this case, the correlation function in the scaling regime
reduces to

Ĉ(t, s;k) = Tc

B|k|σ (e−B|k|σ (t−s) − e−B|k|σ (t+s)), (2.77)

and in the direct space it is

C(t, s; r) = 2TcC1s
1−d/σ

(
G−1(v)

(y − 1)d/σ−1
− G−1(u)

(y + 1)d/σ−1

)
, (2.78)

where G−1 is as given in (2.63).
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The spin-response function in this case is given by

R11(t, s; r) = C1s
−d/σ (y − 1)−d/σ G(v). (2.79)

Here, again we present only the leading behaviour in y of the correlators and responses. The
correlation function in this approximation becomes

C(t, s; r) ≈ 2Tcsf (t/2, r) = 2TcC1s
1−d/σ y−d/σ G(w). (2.80)

Again we read off the critical exponents after setting v = w = 0

a11 = b11 = d

σ
− 1, λ11

R = λ11
C = d. (2.81)

The other non-vanishing correlation functions are given as follows:

• The spin2–spin2 correlation function, substituting (2.80) in (2.24), is

C22(t, s; r) ≈ 8T 2
c C2

1s
2−2d/σ y−2d/σ G2(w). (2.82)

• The spin2–energy correlation function, from (2.76), (2.82), (2.25),

C2ε(t, s; r) ≈ 8T 2
c C2

1

σ
s1−2d/σ y−1−2d/σ G(w)DwG(w). (2.83)

• The energy-density–energy-density correlation function, from (2.76), (2.83), (2.27), is

Cεε(t, s; r) ≈ 4T 2
c C2

1

σ 2
s−2d/σ y−2−2d/σ (Dw + d + σ)[G(w)DwG(w)]. (2.84)

The remaining non-vanishing response functions follow.

• The responses to spin2 conjugate field, obtained from (2.40), (2.79), (2.80) and (2.31),
(2.32), are

R22(t, s; r) ≈ 8TcC
2
1s

1−2d/σ y−2d/σ G2(w), (2.85)

Rε2(t, s; r) ≈ 8TcC
2
1

σ
s−2d/σ y−1−2d/σ G(w)DwG(w). (2.86)

• The responses to energy-density conjugate field, obtained from (2.76), (2.85) and (2.34),
(2.35), are given by

R2ε(t, s; r) ≈ Rε2(t, s; r), (2.87)

Rεε(t, s; r) ≈ 4TcC
2
1

σ 2
s−1−2d/σ y−2−2d/σ (Dw + d + σ)[G(w)DwG(w)]. (2.88)

• Finally, the responses to temperature fluctuations, obtained from (2.76), (2.79) and (2.37),
(2.38), are given as

R2(T )(t, s; r) ≈ 2C2
1s

−2d/σ y−2d/σ G2(w), (2.89)

R(T )
ε (t, s; r) ≈ 2C2

1

σ
s−1−2d/σ y−1−2d/σ G(w)DwG(w). (2.90)

The exponents of these functions, derived in this section, are collected in tables 1 and 2.
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2.3.4. Fluctuation–dissipation ratios.

An important quantity, in particular for the case of critical dynamics, is the fluctuation–
dissipation ratio of an observable, which is defined as [26, 27]

Xab(t, s) := TcRab(t, s; 0)

(
∂Cab(t, s; 0)

∂s

)−1

(2.91)

and its limit value

X∞
ab := lim

s→∞( lim
t→∞ Xab(t, s)) = lim

y→∞( lim
s→∞ Xab(t, s)|y=t/s). (2.92)

For case I, that is for phase-ordering kinetics, it was already known that in the quasi-static
limit s → ∞ but t − s fixed and �s, the fluctuation–dissipation theorem still holds [16]. On
the other hand, we obtain in the scaling limit s → ∞ and y = t/s > 1 fixed that, for all
observables considered here,

X11(t, s) = X22(t, s) = X2ε(t, s) = Xε2(t, s) = Xεε(t, s) = 2σT C1

dC0
s1−d/σ . (2.93)

For d > σ we have therefore in this case that

X∞
11 = X∞

22 = X∞
2ε = X∞

ε2 = X∞
εε = 0 (2.94)

as expected for a low-temperature phase (recall that for d � σ the critical temperature is zero
[24]).

In the case of critical dynamics (cases IIa and IIb), the limit fluctuation–dissipation ratios
are universal numbers characterizing the critical system [20]. For their calculation, we can use
directly the scaling limit s → ∞ with y = t/s being kept fixed. In case IIa, it is convenient
to obtain the autocorrelation function C(t, s) by directly integrating equation (2.61), which
leads to

C(t, s) = 2TcC1σ

d − σ
s1−d/σ y1−d/2σ (y − 1)1−d/σ (y + 1)−1. (2.95)

Combining this with equation (2.64), we get

X11(t, s) = X11(y) = 1

2
(y + 1)

[
1 +

y − 1

d − σ

(
d

2
− σ

y + 1

)]−1

. (2.96)

Similarly, in case IIb, using equations (2.78) and (2.79), and upon substituting the value of
G−1(0) = σG(0)/(d − σ), we find

X11(t, s) = X11(y) =
(

1 +

(
y − 1

y + 1

)d/σ
)−1

(2.97)

In particular, we see that in the quasi-static limit s → ∞ with t − s being kept fixed (or
alternatively y → 1), limy→1 X11(y) → 1 in both critical cases, such that the fluctuation–
dissipation theorem holds. Similarly, from the relations (2.24), (2.25), (2.27) and (2.31),
(2.34), (2.35) we also have limy→1 X22(y) = limy→1 Xεε(y) = limy→1 X2ε(y) = 1. On the
other hand, and remarkably, the limit fluctuation–dissipation ratio turns out to be independent
of the choice of the considered observable. We find for y → ∞

X∞
11 = X∞

22 = X∞
2ε = X∞

ε2 = X∞
εε =

{
1 − σ/d for the case IIa
1/2 for the case IIb.

(2.98)

This reduces to the well-known expressions in the short-range model [20] when z = σ → 2.
We recall that in [28] a slightly different definition for the energy density was used, in which
case the value for the corresponding fluctuation–dissipation ratio may be different.
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3. Local scale invariance

The theory of local scale invariance (LSI) was developed in a series of papers [6, 7, 14, 29, 30],
using local symmetries to fix the response and correlation functions. For recent reviews which
focus on different types of applications see [11–13]. For our purposes here it is sufficient to
just quote a few results. A central concept of LSI are the quasi-primary scaling operators
[7], which transform in the simplest possible way under local-scale transformations, very
much in analogy with the (quasi)primary scaling operators of conformal field theory [10].7 A
quasi-primary scaling operator φ is characterized by a set of ‘quantum numbers’ (x, ξ, µ, β),
where x is the ‘scaling dimension’ of φ and µ is sometimes referred to as the ‘mass’ of φ (not
to be confused with the lattice constant µ in section 2.1).

3.1. Response functions

For a given dynamical exponent z, LSI yields the following prediction for the response function
of a quasi-primary operator φ characterized by the parameters (x, ξ, µ, β) [7, 13, 14, 17]:

RLSI(t, s; r) = δµ,−µ̃δβ,β̃R(t, s)F (µ,β)

( |r|
(t − s)1/z

)
,

R(t, s) = s−1−a

(
t

s

)1+a′−λR/z (
t

s
− 1

)−1−a′

,

(3.1)

where the exponents a, a′ and λR are related to the parameters (x, ξ, µ) via

a + 1 = 1

z
(x + x̃), a′ + 1 = 1

z
(x + 2ξ + x̃ + 2ξ̃ ),

λR

z
= 2x

z
+

2ξ

z
, (3.2)

and the parameters (x̃, ξ̃ , µ̃, β̃) characterize the response field φ̃. The spacetime partF (µ,β)(ρ)

(where ρ := |ρ| and ρ = r(t − s)−1/σ ) satisfies the following fractional differential equation:(
∂ρ + zµρ∂2−z

ρ + [βµ + µ(2 − z)]∂1−z
ρ

)
F (µ,β)(ρ) = 0, (3.3)

which also illustrates that the ‘mass’ µ may be interpreted as a generalized diffusion constant.
The fractional derivatives ∂α

ρ are defined and discussed in [7]. Recall, however, that the
definition used here is not unique and that different non-equivalent definitions for fractional
derivatives exist [31, 32]. If z = N + p/q, where N = [z] is the largest integer less or equal
to z, 0 � p/q < 1 and p and q coprime, the solution of (3.3) by series methods is particularly
simple, with the result [14]

F (µ,β)(ρ) =
∑
m∈E

cmφ(m)(ρ), with φ(m)(ρ) =
∞∑

n=0

b(m)
n ρ(n−1)z+p/q+m+1. (3.4)

The constants cm are not determined by LSI and the set E is

E =
{−1, 0, . . . , N − 1 p 	= 0

0, . . . , N − 1, p = 0.
(3.5)

Finally, the coefficients b(m)
n read

b(m)
n = (−z2µ)n�(p/q + 1 + m)�(n + z−1(p/q + m) + β + 2 − z)

�((n − 1)z + p/q + m + 2)�(z−1(p/q + m) + β + 2 − z)
, (3.6)

such that φ(m)(ρ) has an infinite radius of convergence for z > 1.

7 Specifically, ifX is an infinitesimal generator of a local-scale transformation and φ a quasi-primary scaling operator,
δφ = −εXφ. Usually, the order parameter corresponds to a quasi-primary operator, but if φ is quasi-primary, then
neither ∂tφ nor ∂�rφ are. The n-point functions 〈φ1 . . . φn〉 of quasi-primary operators transform covariantly and hence
satisfy linear differential equations X [n]〈φ1 . . . φn〉 = 0.
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Let us now consider the magnetic response of the order parameter, R11, the result for
which we recall from (2.28) is

R11(r; t, s) = (2π)ds−d/σ

(
t

s

)−�/2

(t/s − 1)−d/σ

∫
k

eik·r(t−s)−1/σ

e−Bkσ

= R(t, s)

∞∑
n=0

anρ
2n, ρ = r(t − s)−1/σ , (3.7)

where the exponent � is given by

� =


−d/σ case I
−2 + d/σ case IIa
0 case IIb

. (3.8)

Clearly, the spacetime part of the LSI prediction does not agree with this result since the
exponents of ρ in equations (3.7) and (3.4) are linearly independent if z is not an integer.
In equation (3.7), we have expanded the exponential in order to rewrite this as a series in
ρ = |ρ|. This form of the series is incompatible with the expected form (3.4) for z < 2.
This disagreement has motivated us to look for a new formulation of LSI, which uses a more
appropriate form of fractional derivatives ∇α

r . This formulation including the exact definition
of ∇α

r will be described elsewhere in detail [17], here we only mention two results we need:

1. Generalized Bargmann superselection rule. Let a system be given with dynamical exponent
z 	= 2k+2

2k+1 , (k ∈ N). Let {φi} be a set of quasi-primary scaling operators, each characterized by
the set (xi, ξi, µi, βi). Then the (2n)-point function

F (2n) := 〈φ1(t1, r1) . . . φ2n(t2n, r2n)〉 (3.9)

is zero unless µi form n distinct pairs (µi, µτ(i)) (i = 1, . . . n), such that

µi = −µτ(i). (3.10)

2. The decomposition (3.1) of the response function remains valid, but its spacetime part now
satisfies the fractional differential equation, which is quite similar to equation (3.3)(

∂ρ + zµρ∇2−z
ρ + [βµ + µ(2 − z)]∂ρ∇−z

ρ

)
F (µ,β)(ρ) = 0. (3.11)

A solution of equation (3.11) reads [17]

F (µ,β)(ρ) = f0

∫
k

eiρ·k|k|β exp

(
− 1

z2i2−zµ
|k|z

)
(3.12)

We see that this prediction of the ‘new’ formulation of LSI is fully compatible with our exact
result (3.7) for R11(t, s; r) if we identify

µ1 = −µ̃1 = (z2Bi2−z)−1, β1 = β̃1 = 0, g0 = (2π)d, (3.13)

and set for the critical exponents

a11 = a′
11 = d

σ
− 1, λ11

R = d +
ασ

2
. (3.14)

This agreement supports the assumption that the fields φ and φ̃ are both quasi-primary with
µ = −µ̃ and β = β̃. This is further supported by the fact thatR12(t, t

′; r) = 0 = R1ε(t, t
′; r),

which is predicted by LSI because of the generalized Bargmann superselection rule.
Having verified that the response function for the order-parameter field φ agrees with

LSI, and thus having confirmed that φ is indeed quasi-primary, we now enquire whether this
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holds for composite operators. First, we consider the short-range model σ � 2. The relevant
results can be read from those of section 2 if we let σ → 2. Then the response R11(t, s; r) in
equation (3.7) simplifies to

R11(t, s; r) = s−d/2

(
t

s

)−�/2 (
t

s
− 1

)−d/2

exp

(
− 1

4B

r2

t − s

)
, (3.15)

up to a normalization constant. Similarly, the temperature response of the spin2 field, from
the above expression and equation (2.37), becomes

R(T )
2 (t, s; r) = s−d

(
t

s

)−� (
t

s
− 1

)−d

exp

(
− 1

2B

r2

t − s

)
, (3.16)

which is of the form predicted by equation (3.12), if we identify

µ2 = −µ̃2 = 2µ1, β2 = β̃2 = 0, (3.17)

and

a22 = a′
22 = 2a11 + 1, λ22

R = 2λ11
R . (3.18)

Physically, we can therefore identify temperature changes as the conjugate variable to the
spin-squared operator, at least for the short-ranged case. On the other hand, the spin2 response
R22 to the perturbation h2(t,x) cannot be cast into that form. This can easily be seen in
equation (2.54), which has a dependence on t + s, while the LSI-predicted form does not
contain this dependence. Note that this response function in a field-theoretical setting (see,
for example, [8, 9]) corresponds to 〈φ2(t,x)(φφ̃)(s,x + r)〉.

Our findings suggest that for the short-range model the operator φ2, corresponding to
spin2, is quasi-primary and so is the corresponding response field φ̃2 (obtained by locally
perturbing the temperature). The parameters of these two fields are related to the fields φ and
φ̃ in the following way: if φ has the parameters (x, ξ, µ, β) then the parameters of φ2 can be
obtained from these by multiplying each parameter by the factor 2. Similarly, the parameters
of φ̃2 are related to those of φ̃. On the other hand, we see that the composite operator φφ̃

(defined by a perturbation of the external field h2(t,x)) is not quasi-primary, and neither is the
energy-density operator ε(x), even in the short-range model (that last finding is not surprising,
since we have already seen in section 2 that ε(x) is related to the gradient of φ)8.

We now proceed to the long-range model, where 0 < σ < 2. R22 cannot be brought into
the LSI-predicted form, for the same reason as mentioned above for the short-range model,
namely by comparing the t + s dependence. The response function R(T )

2 cannot be brought
into the LSI-predicted form either, since it contains a product of the type F (µ,β)(t, s; r)2. This
again cannot be cast into the general form (3.12), except for z = 2. In this exceptional case,
the special properties of a Gaussian integral ensure that F (µ,β)(t, s; r)2 can be rewritten in the
form (3.12) upon redefinition of parameters. By a similar analysis we find that Rε2 does not
have the LSI-predicted form. We conclude that the operator φ2 is not quasi-primary under
LSI for the long-range model, unlike for the short-range case σ � 2.

In a similar way, we also find that the response functions of the operator Oε , namely Rε2

and Rεε , also do not have the forms (3.1) and (3.12).
Summarizing, we have seen that in the long-range model the above composite fields,

though made of quasi-primary fields, are not quasi-primary. For the time being, the order-
parameter φ and the associate response field φ̃ related to a magnetic perturbation remain the

8 In the Landau–Ginzbourg classification of primary scaling operators in the minimal models of 2D conformal
field-theory (Ising, Potts, etc), one usually has that φ and eventually a finite number of normal-ordered powers : φ :�

are primary.
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only scaling operators with a simple transformation under local-scale transformations. This
is distinct from the short-range case of z = 2. It remains an open question in which sense the
transformation of, say, φ2 is distinct from the one of φ. On the other hand, the generalized
Bargman superselection rule (which follows from the weaker Galilei-invariance alone) has
been confirmed in all cases, by assigning the following (relative) ‘masses’ to the fields

µφ = µ, µO2 = 2µ, µOε
= 2µ, (3.19)

and with negative masses to the corresponding response fields. This is natural because of the
linear structure of the theory.

3.2. Correlation functions

In this section, we compare the LSI prediction for the correlation function of the quasi-primary
operator φ(t,x) with our exact result, see (2.46), (2.61), (2.77).

The LSI prediction for the correlation function, for fully disordered initial conditions with
white noise, is [17]

CLSI(t, s; r) = CLSI
init (t, s; r) + CLSI

th (t, s; r), (3.20)

with the ‘initial’ part

CLSI
init (t, s; r) = c0s

−binit+2β/z+d/zy−binit+λR/z+β/z(y − 1)binit+d/z−2λR/z

×
∫

k

|k|2β exp

(
− |k|z

z2µi2−z
(t + s)

)
eir·k, (3.21)

and the ‘thermal’ part

CLSI
th (t, s; r) = 2T s−bth+2β/z+d/zy2ξ/z(y − 1)2(1+a′)−2λR/z−4ξ/z

×
∫ 1

0
dθ(y − θ)−2(a′+1)+λR/z+2ξ/z+β/z+d/z(1 − θ)−2(a′+1)+λR/z+2ξ/z+β/z+d/z

× θ4ξ̃ /zg

(
1

y

y − θ

1 − θ

) ∫
k

|k|2β exp

(
−|k|zs(y + 1 − 2θ)

z2µi(2−z)

)
eir·k. (3.22)

Here, the function g(u) is not determined by the dynamical symmetries and ξ and ξ̃ can be
considered as free parameters.

In case I, the spin–spin correlation function (2.46) can be rewritten as

C(t, s; r) = s−�y−�/2
∫

k

eir·k e−B|k|σ (t+s), (3.23)

up to a normalization constant, with α given by (3.8). In this case (T < Tc), the contribution
coming from the initial noise is the relevant one [1], and therefore we should compare with
the spin–spin correlator CLSI

init (t, s; r). Indeed we find for the choice of parameters as given in
(3.13), (3.14) and binit = 0 that CLSI

init (t, s; r) = C(t, s, r), as it should be.
In cases IIa and IIb, the correlation function, as given in (2.61) and (2.77), can be rewritten

in direct space as follows, using again (3.8) and up to normalization constant,

Cth(t, s; r) = 2T sy−�/2
∫ 1

0
dθ θ�

∫
k

e−B|k|σ s(y+1−2θ) eir·k. (3.24)

For the cases IIa (T = Tc, σ < d < 2σ) and IIb (T = Tc, d > 2σ), in the LSI-prediction
the term coming from the thermal noise is the relevant one [1, 3]. If we set g(u) = 1 and, in
addition to the given choice of parameters (3.13) and (3.14), let

bth = d

z
− 1 and ξ = −1

4
z�, ξ̃ = 1

4
z�, (3.25)

we find agreement of the LSI-predicted correlation function CLSI
th (t, s; r) = C(t, s; r).
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4. Conclusion

We have analysed the kinetics of the spherical model with long-range interactions when
quenched onto or below the critical point Tc. For T < Tc we have reproduced the results of
Cannas et al [16] for the order parameter and for T = Tc we have derived exact results for
the response and correlation function of the order parameter. We also considered, for T � Tc,
various composite fields and derived their ageing exponents and scaling functions as listed in
section 2. We then have carried out a detailed test of local scale invariance using our analytical
results. For this purpose, the long-range spherical model offers the useful feature that its
dynamical exponent z = σ depends continuously on one of the control parameters.

We have obtained the following results:

(i) Dynamical scaling holds for various composite fields for quenches onto or below the
critical temperature. The non-equilibrium exponents are given in tables 1 and 2. The
scaling functions also have been determined.

(ii) In the kinetic spherical model with short-ranged interactions (σ > 2 and hence z = 2),
apart from the order-parameter field φ, its square too appears to be a quasi-primary scaling
operator, as tested through several two-time response and correlation functions.

(iii) In the long-range spherical model, the first tests of the spacetime response in a system with
a tuneable dynamical exponent have been performed. This shows that the formulation
of LSI with z 	= 2, which we proposed earlier [7], even with the recent improvements
given in [14], does not describe the exact result for R11 when 0 < z < 2, although that
formulation did pass previous tests when z = 2 [33] or z = 4 [14, 15].

(iv) As can be seen from the fractional differential equation satisfied by the spacetime response
function, the precise definition of the fractional derivative used is crucial. We shall present
elsewhere a systematic construction of new generators of local scale invariance [17] where
we shall also show that all previous tests where z = 2 or z = 4 are passed by the new
formulation. Here, we have seen that the exact results from the long-range spherical
model are completely consistent with the new formulation of local scale invariance.

(v) In contrast to the short-range case where z = 2, the spin-squared field in the long-range
model is no longer described by a quasi-primary scaling operator. This calls for a more
systematic analysis, since it indicates that there might be new ways, not readily realized
in conformal invariance, of non-quasi-primary scaling operators.

(vi) Both the two-time response and the correlation function of the order-parameter field φ

are fully compatible with local scale invariance in the entire range 0 < z = σ < 2.

While the analytical results presented here certainly provide useful information, the eventual
confirmation of local scale invariance might appear fairly natural since the underlying Langevin
equation is linear. Indeed, for linear Langevin equations there is a direct proof of local scale
invariance which uses a decomposition of the Langevin equation into a ‘deterministic part’
for which non-trivial local scale-symmetries can be mathematically proven and a ‘noise part’
[13, 17, 29]. For nonlinear Langevin equations the formal proof of non-trivial symmetries of
the ‘deterministic part’ is still difficult, although progress has been made [34]. In the absence
of exact solutions for models described in terms of nonlinear Langevin equations numerical
tests going beyond merely checking the autoresponse function R(t, s; 0) will be required and
it will be useful to be able to vary the value of the dynamical exponent z. In this context, a
natural candidate for such studies is the disordered Ising model quenched to T < Tc, where
it is already known that z depends continuously on the disorder and on temperature, see
[12, 35, 36] and references therein. Furthermore, its Langevin equation is nonlinear. We hope
to be able soon to report tests on the spacetime behaviour of response and correlators in this
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model which should provide useful information on whether LSI with z 	= 2 can really be
extended beyond the simple solvable systems studied so far.
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Appendix. Correlations and responses

We briefly present the calculational details that lead to the expressions given in section 2.2. In
evaluating the expectation value of the composite operators we use Wick’s contraction, which
is applicable in our model if, apart from the noise, the initial spin distribution for S(0,x) is
also Gaussian [37]. By Wick’s contraction and Fourier transforming, we get

C2ε(t, t
′;x − x′) =

∫
�k,�k′

ei(k+k′)·(x−x′)(ωk + ωk′)C(t, t ′;k)C(t, t ′;k′)

= − 1

g(t)
∂t

∫
�k,�k′

ei(k+k′)·(x−x′)g(t)C(t, t ′;k)C(t, t ′;k′), (A.1)

resulting in equation (2.25). Similarly,

Cεε(t, t
′;x − x′) = 1

2

∫
�k,�k′

ei(k+k′)·(x−x′)(ωk + ωk′)2C(t, t ′;k)C(t, t ′;k′)

= 1

2g(t)
∂2
t

∫
�k,�k′

ei(k+k′)·(x−x′)g(t)C(t, t ′;k)C(t, t ′;k′) (A.2)

gives the equation (2.27).
When H → H − ∑

t,x h1(t,x)S(t,x), the solution to the corresponding Langevin
equation is

Ŝ1(t,k;h1) = Ŝ(t,k) +
e−ωk t

√
g(t)

∫ t

0
dτ eωkτ

√
g(τ)h1(τ,k), (A.3)

where the first term on the right-hand side is the unperturbed solution as given in equation (2.8).
Differentiating the above expression with respect to h1(t

′,x′) and Fourier transforming back
gives R11(t, t

′;x − x′), while both R21(t, t
′;x − x′) and Rε1(t, t

′;x − x′) vanish since
〈̂S(t,k)〉 = 0.

When H → H − ∑
t,x h2(t,x)S2(t,x), the solution to the corresponding Langevin

equation is

Ŝ2(t,k;h2) = Ŝ(t,k) + 2
∫ t

0
dτ eωk(τ−t)

√
g(τ)

g(t)

∫
�k′

Ŝ2(τ,k
′;h2)h2(τ,k − k′). (A.4)

Here Ŝ2(τ,k
′;h2) on the right-hand side can be replaced by Ŝ(τ,k′), while evaluating the

response functions, since the difference is of order O
(
h2

2

)
. Clearly, R12(t, t

′;x−x′) vanishes
since the initial magnetization is zero. Using the above equation we get〈̂
S(t,k)

δŜ2(t,k
′;h2)

δh2(t ′,x′)

〉
h2=0

= 2

√
g(t ′)
g(t)

e−ωk′ (t−t ′)C(t, t ′;k) e−i(k+k′)·x′
, (A.5)
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and then multiplying it by 2 exp(i(k + k′) · x) and integrating over �k and �k′ results in
equation (2.31). When we multiply equation (A.5) by 2ωk exp(i(k + k′) · x) and integrate
over �k and �k′ , we get

Rε2(t, t
′;x − x′) = 4

√
g(t ′)
g(t)

C(t, t ′;x − x′)
∫

�k

ωk eik·(x−x′) e−ωk(t−t ′), (A.6)

which is rewritten as in equation (2.32).
When H → H − ∑

t,x hε(t,x)Oε(t,x), the solution to the corresponding Langevin
equation Ŝε(t,k; ε) = Ŝ(t,k) + δŜε(t,k; ε), where

δŜε(t,k; ε) =
∫ t

0
dτ eωk(τ−t)

√
g(τ)

g(t)

∫
�k′

(ωk + ωk′ )̂Sε(τ,k
′; ε)hε(τ,k − k′). (A.7)

From the above equation we get〈̂
S(t,k)

δŜε(t,k
′; ε)

δhε(t ′,x′)

〉
ε=0

=
√

g(t ′)
g(t)

eωk′ (t ′−t) e−i(k+k′)·x′
(ωk + ωk′)C(t, t ′;k)

= −
√

g(t ′)
g(t)

∂t (e
−ωk′ (t−t ′) e−i(k+k′)·x′√

g(t)C(t, t ′;k)). (A.8)

Now multiply this equation by 2 exp(i(k + k′) · x) and integrate over �k and �k′ to get
equation (2.34). If we multiply equation (A.8) by a factor (ωk + ωk′) then the only change in
the last term is that ∂t gets replaced by −∂2

t . Further, multiplying by exp(i(k + k′) ·x) and
integrating over �k and �k′ results in equation (2.35).

When the temperature T → T + T ′(t,x) is shifted then the solution ŜT (t,k; T ′) evolves
just as given in equation (2.8), where the mean is 〈̂η(t,k)〉T ′ = 0, but the variance becomes

〈̂η(t,k)̂η(t ′,k′)〉T ′ = 〈̂η(t,k)̂η(t ′,k′)〉 + 2T ′
k+k′(t)δ(t − t ′). (A.9)

This implies 〈̂ST (t,k; T ′)〉 is independent of T ′ and

δ

δT ′(t ′,x′)
〈̂S(t,k)̂S(t,k′)〉T ′

∣∣∣∣
T ′=0

= 2
g(t ′)
g(t)

e−(ωk+ωk′ )(t−t ′) e−i(k+k′)·x′
. (A.10)

Now multiplying this equation by exp(i(k + k′) ·x), and then integrating over �k and �k′ ,
results in equation (2.37). Similarly, multiplying by exp(i(k + k′) · x) along with the factor
(ωk + ωk′)/2, and then integrating over �k and �k′ , results in equations (2.38).
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